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1. Background and Challenge 
What is many-shot ICL? How is it related to the long-context model 
evaluation? 
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Research Question
• What types of ICL tasks benefit from additional demonstrations, and 

are these tasks effective at evaluating LCLMs (long context language 
models)?

• To what extent does each task require learning from a limited 
number of samples versus learning from more samples with broader 
context from LCLMs?
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Background: Many-shot ICL
In-Context Learning (ICL) enables models to perform tasks conditioned 
on a set of demonstrations

Many-Shot ICL: # of Demonstrations > 100 or even 1000
• Particularly useful for classification tasks with many labels
• A potential alternative to finetuning
• Limited by the context size of LLMs
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Background: Long-context Models
The current SoTA long-context models are able to process up to 128k 
tokens, some even can handle 1 million tokens

Long-context models are useful for
• Long document summarization
• Long-context dialogue
• Codebase comprehension
• …

Also, they makes many-shot ICL possible
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Background: Long-context Evaluation
Needle In A Haystack: Ask the model to retrieve a random statement 
(the “needle”) in the middle of a long context window (the “haystack”)

Synthetic Tasks
• Controllable Length
• Easy to obtain
• Not representative of 

practical use cases
• Mainly Retrieval
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Retrieval vs Global Context
• Currently, many long-context evaluation benchmarks only focus 

models’ ability to retrieve from the long context
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Retrieval vs Global Context
• Currently, many long-context evaluation benchmarks only focus 

models’ ability to retrieve from the long context

What about understanding the 
global context?
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Background: Long-Context Evaluation
Novel Challenge: Ask the model to verify claims about fiction books 
given the whole book context

Realistic Tasks
• Global Understanding
• Closer to the practical 

use cases
• Costly to annotate,
• Hard to control length
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Motivation
• Could we build a benchmark that evaluate both models’ retrieval 

ability and global context understanding?
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Motivation
• Could we build a benchmark that evaluate both models’ retrieval 

ability and global context understanding?
• Easy and cheap to obtain?
• Length Controllable?
• More realistic/practical tasks?
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Many-shot ICL
• When the model perform ICL, it is

• Learning from similar demonstrations as test examples from the prompt to 
perform the task

• Using all the demonstrations to learn the underlying task skill and increase its 
task understanding

• Learning similar examples -> the model’s retrieval ability
• Learning all examples -> the model’s global context understanding
• Many-shot ->  easy to control length
• Realistic tasks
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Related Work: LongICLBench
• LongICL Benchmark contains 6 extreme-label classification tasks and 

evaluate models on many-shot ICL on these 6 tasks. 
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Gaps on Many-shot ICL
• LongICL Benchmark only contains classification tasks
• Unclear how long-context models perform on many-shot ICL tasks 

other than classification in general.
• Classification tasks can be solved by retrieving similar examples

• Whether the model only retrieves or refines the task understanding 
during many-shot ICL.
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Contributions
• Investigate whether ICL tasks benefit from additional demonstrations 

and assess their suitability for evaluating LCLMs with a context length 
up to 128k tokens. 

• Develop methods to characterize the primary skills evaluated by ICL 
tasks: retrieval capabilities or global context understanding. 

• Construct a many-shot ICL benchmark, named ManyICLBench, 
designed for evaluating LCLMs on both retrieval and global context 
understanding

• Benchmark 12 widely-used state-of-the-art LCLMs on ManyICLBench  
to assess their performance comprehensively.
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2. Preliminary Study
Does many-shot ICL help?
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Preliminary Study : Many-Shot ICL
• Datasets:

• 12 datasets and 20 subtasks
• Classification, Summarization, Reasoning, and Translation

• Models:
• Llama-3.1 8B and 70B
• Qwen2 7B and 72B
• GLM-4-9B
• Mistral Nemo (13B) and Large (123B)
• Phi-3: mini (3.8B), small (7B), and medium (14B)

• Context Length: 1k – 128k, used gpt-4o tokenizer
• Randomly sample datapoints
• Longer Prompt contains examples from the shorter prompt
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Preliminary Study : Many-Shot ICL
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• Correlation between context 
lengths and performance

• Positive = tasks benefit from 
additional demonstrations

• Negative = tasks harm by 
additional demonstrations 
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• Classification Tasks benefit 
from additional 
demonstrations

• Summarization tasks benefit 
from additional 
demonstrations
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• Classification Tasks benefit 
from additional 
demonstrations

• Summarization tasks benefit 
from additional 
demonstrations

• Other tasks show inconsistent 
trend in many-shot ICL
• Model Problem
• Task Problem

• Ideal Case: additional should 
improve or at least not harm 
it

• We want to study each task 
more carefully
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3. Our Benchmark – ManyICLBench
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Task Categories
• Similar-sample learning (SSL) tasks test models to retrieve and learn 

from the most similar demonstrations
• All-sample learning (ASL) tasks test models to assimilate and learn 

from all demonstrations
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Sample Learning Ratio (SLR)
SLR assess whether tasks predominantly rely on models to retrieve 
relevant examples during many-shot ICL

High SLR        removing similar examples hurts performance more

Low  SLR        removing similar examples is indifferent than removing dissimilar examples
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Sample Learning Ratio (SLR)
SLR assess whether tasks predominantly rely on models to retrieve 
relevant examples during many-shot ICL

High SLR        removing similar examples hurts performance more

Low  SLR        removing similar examples is indifferent than removing dissimilar examples
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Perfleast = performance with {full demonstrations} \ {10% least similar demonstration}

Perfmost = performance with {full demonstrations} \ {10% most similar demonstration}



SLR – Experiment Setting
• Models

• Llama-3.1 8B and 70B
• Qwen2-7B and 72B
• GLM-4-9b-Chat
• Mistral-Nemo

• Context Length: 1k – 64k
• All tasks exclude GoEmotions and translations
• 3 different random seeds
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SLR – Results
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ManyICLBench
• 5 SSL Tasks:  BANKING77, dialogRE, TREC50, CLINC150, and the 

geometric shape task from BBH.
• 11 ASL Tasks: all math tasks, summarization task, GPQA with 

explanations, ARC_challenge, and all BBH tasks except geometric 
shapes. 
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4. Result and Analysis
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Models struggle at retrieving examples 
after 32k
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ASL tasks are challenge
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The Paradox of Model Size
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Llama 3.1 Performance Drop at 128k
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Gemini, Qwen2,and GLM-4 are robust at long 
context
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Why LCLMs fail on ASL tasks?
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Why do LCLMs perform better on 
SSL tasks?
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5. Conclusion

38



Conclusion
• In this work, we test different models on a variety of many-shot ICL 

tasks
• Using sample learning ratio (SLR), we category tasks into two kinds: 

similar-sample learning (SSL) tasks and all-sample learning (ASL) 
tasks.

• We present a long-context evaluation benchmark that contains 
realistic tasks and evaluate different abilities of models.

• Benchmark 11 open-weight LCLMs and Gemini-1.5 Pro. 
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The End

40



Qwen2 Training Details
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• Training up to 32k tokens
• Modified RoPE frequence and YARN
• The training-free length extension methods

• enable models to use additional demonstrations?
• merely maintain their performance in the short context length ?



Llama-3.1 Training Details
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• Training up to 128k tokens
• Modify RoPE base and continutal training up to 128k tokens
• SFT with long context data
• Why performance drop at 128k?

• The length distribution of long-context data
• Only with a mean average of 128k tokens. 



GLM-4 Training Details
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• Training up to 128k tokens
• Similar to Llama-3.1 Training Recipe
• Why GLM is more robust?

• Use LongAlign, determines the length distribution of long-context SFT data
• Go through the RLHF stage with both short and long data



Dataset Details
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Dataset Details
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Model Details
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Quantized vs Regular
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Classification Performance
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Translation + Summarization Performance
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Science Performance
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Math Performance
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Symbolic Performance
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